Wavelet Approximations using (Λ⋅C1) Matrix-Cesaro Summability Method of Jacobi Series
نویسندگان
چکیده
In this paper, an application to the approximation by wavelets has been obtained by using matrix-Cesaro (Λ⋅C1) method of Jacobi polynomials. The rapid rate of convergence of matrix-Cesaro method of Jacobi polynomials are estimated. The result of Theorem (6.1) of this research paper is applicable for avoiding the Gibbs phenomenon in intermediate levels of wavelet approximations. There are major roles of wavelet approximations (obtained in this paper) in computer applications. The matrix-Cesaro (Λ⋅C 1) method includes (N, p n) ⋅C 1 method as a particular case. The comparison between the numerical results obtained by the (N, p
منابع مشابه
Summability Method of Jacobi Series
In this paper, an application to the approximation by wavelets has been obtained by using matrix-Cesàro (Λ · C1) method of Jacobi polynomials. The rapid rate of convergence of matrix-Cesàro method of Jacobi polynomials are estimated. The result of Theorem (6.1) of this research paper is applicable for avoiding the Gibbs phenomenon in intermediate levels of wavelet approximations. There are majo...
متن کاملA Study on Almost Matrix Summability of Fourier-jacobi Series
In this paper, a quite new theorem on almost summability of Fourier-Jacobi series has been established. Our theorem extends and generalizes all previously known results of this line of work. Full text
متن کاملSome conditions under which slow oscillation of a sequence of fuzzy numbers follows from Ces`{a}ro summability of its generator sequence
Let $(u_n)$ be a sequence of fuzzy numbers. We recover the slow oscillation of $(u_n)$ of fuzzy numbers from the Ces`{a}ro summability of its generator sequence and some additional conditions imposed on $(u_n)$. Further, fuzzy analogues of some well known classical Tauberian theorems for Ces`{a}ro summability method are established as particular cases.
متن کاملOn the Mean Summability by Cesaro Method of Fourier Trigonometric Series in Two-weighted Setting
It is well known that (see [9]) Cesaro means of 2π-periodic functions f ∈ Lp(T) (1 ≤ p ≤ ∞) converges by norms. Hereby T is denoted the interval (−π,π). The problem of the mean summability in weighted Lebesgue spaces has been investigated in [6]. A 2π-periodic nonnegative integrable function w : T→R1 is called a weight function. In the sequel by L p w(T), we denote the Banach function space of ...
متن کاملSolving linear and nonlinear optimal control problem using modified adomian decomposition method
First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...
متن کامل